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Traditionally, models used in air traffic control and flow management are based on 
simulating the trajectories of individual aircraft. This approach results in models with a 
large number of states, which are intrinsically susceptible to errors and difficult for 
designing and implementing optimal strategies for traffic flow management. This paper 
outlines an innovative approach for the development of linear time variant dynamic traffic 
flow system models based on historical data about the behavior of air traffic. The resulting 
low-order, linear, robust models can be used both for the analysis and synthesis of traffic 
flow management techniques for current and future systems. 

I.� Introduction 
emand for air transportation has seen a six-fold increase in the past 30 years, and estimates call for a strong 
average annual growth rate of 4.7% during the next 20 years.1 This increase in demand will put a further strain 

on the airports and sectors within the National Airspace System (NAS). The United States Congress has recognized 
the impact of increased demand and has established a Joint Planning and Development Office for creating and 
developing a Next Generation Air Transportation System to transform NAS operations. There are more than 40,000 
commercial flights operated in the U. S. airspace alone on a typical day at the present time.  In order to ensure that 
this traffic moves smoothly and efficiently in the presence of disruptions caused by convective weather and airport 
conditions, innovative modeling and design methods are needed in traffic flow management (TFM). 

Today, air traffic flow prediction is done by propagating the trajectories of the proposed flights forward in time 
and using them to count the number of aircraft in a region of the airspace. The Center TRACON Automation System 
(CTAS) and the Future Automation Concepts Evaluation Tool (FACET) use this physics-based modeling approach 
for demand forecasting. The accuracy of these predictions is impacted by departure and weather uncertainties.2-3 
These trajectory-based models predict the behavior of the NAS adequately for short durations of up to 20 minutes. 
With the short prediction accuracy, it is difficult, if not impossible, to make sound strategic decisions on air traffic 
management. 

A strategic TFM decision may involve rerouting all aircraft originating from the west coast, heading to airports 
on the east coast, to deal with anticipated stormy weather conditions near Chicago over the next 4 hours. Strategic 
TFM is a hierarchical system consisting of large number of states, and operating over time scales extending from a 
few hours to 24 hours. As shown in Fig. 1, the airspace in the United States is divided into 20 Centers in the 
continental United States plus one each in Alaska and Hawaii. The flow relationship between neighboring Centers is 
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shown via links in Fig. 2. For example, the figure shows that Kansas City Center (ZKC) receives and sends traffic to 
the Minneapolis Center (ZMP). Proper mixes of strategic and tactical flow controls initiated by the System 
Command Center and the 22 Control Centers accomplish TFM in the U. S. Some of the frequently used flow 
restrictions include ground stop, ground delay, metering (miles-in-trail and time-based) and rerouting.  Dispatchers 
and air traffic coordinators at airlines respond to these flow control actions by rescheduling and canceling flights, 
thus changing flow patterns.   

Since strategic TFM requires control of flows of aircraft rather than individual aircraft, an aggregate model of 
traffic flow that does not use trajectories of individual aircraft is desirable. Strategic TFM can be substantially 
improved by the development of simpler, but more accurate models that allow the exploitation of different analysis 
and synthesis techniques from Systems Theory. Motivated by this objective, this paper describes a direct method for 
computing an aggregate model of air traffic flows from historical data.  

In the recent literature, Ref. 4 describes a method for spatially aggregating air traffic for generating models of air 
traffic flow in an interconnected network of one-dimensional control volumes. An alternative approach to modeling 
air traffic flows using flow relationship between adjacent Centers is described in Ref. 5. The Linear Dynamic 
Systems Model (LDSM) in Ref. 5 is built by counting the number of aircraft entering a Center from an adjacent 
Center, number of aircraft leaving a Center for a neighboring Center and the numbers of aircraft landing and taking 
off within a Center. Input to this model consists of the number of departures. Results presented in Ref. 5, assuming 
that departures follow a Poisson distribution, show that the resulting numbers of aircraft in the Centers also fit a 
Poisson distribution. The main limitation of the results in Ref. 5 is that modeling departures from Poisson 
distributions (albeit a different one for each major hub airport) ignores the fact that departure counts vary 
significantly during the day as banks of aircraft arrive and depart major hub airports. Aircraft counts in the Centers, 
forecast by LDSM, can be improved significantly by accounting for the nominal departure rates as a function of time 
and augmenting them by modeling departure uncertainty about these nominal rates. 

In this paper, the basic time-invariant LDSM proposed in Ref. 5 has been extended to a time-varying one. 
Instead of a single state transition matrix, several state transition matrices (one for each hour) were used to cover the 
entire prediction period. State transition matrices were computed using historical air traffic data. The resulting model 
was then driven by average departure rates, also derived from historical air traffic data, to predict aircraft counts in 
the 23 airspace regions. These 23 regions consisted of 20 Centers in the continental United States, one each covering 
Hawaii and Alaska, and one for the international airspace. 

Uncertainty bounds around these nominal predictions were then obtained using the standard state covariance 
propagation model driven by the covariance of departure counts. Day-to-day variations about the average departure 
counts are assumed to be zero-mean Gaussian random variables. Four days of traffic data were used for computing 
both, the average departure counts and the variances about these average counts. Results are presented for another 
day of traffic data (other than the four days used in LDSM) to show that these counts lie within the confines of the 
mean aircraft counts predicted by the LDSM and uncertainty bounds generated by the covariance propagation 
technique. The main strength of the LDSM described here is that all the analytical tools available for analysis of 
linear dynamic systems can be applied to this model. 

 

Fig. 1 Twenty Centers in continental U. S. airspace. 
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LDSM is described in Sec. II.  Section III describes the data from multiple days used for constructing and 
evaluating the model. Section IV describes the modeling of the state transition matrix using flow transition 
probabilities while Sec. V describes the model for the departures. In Sec. VI, the uncertainty bounds generated using 
the model are provided. Finally, concluding remarks are made in Sec. VII. 

II.� Linear Dynamic System Model 
A linear dynamic systems model for the air traffic in the NAS is developed in this section. This model can be 

used for predicting traffic count, which is the number of aircraft in a given Center, in the 22 Centers in the United 
States and one international region. The resulting traffic count forecast, which is a measure of future demand, can 
then be balanced against the available capacity using traffic flow management. 

The number of arrivals (landings) and the number of aircraft leaving a Center in an interval of time, T! , are 
assumed to be proportional to the number of aircraft in the Center at the beginning of the interval. Following the 
notation in Fig. 3 and using the principle of conservation of flow (analogous to the principle of mass balance in a 
control volume) in a Center, the number of aircraft in Center i  at the next instant of time, 1+k , can be related to 
the number of aircraft in the Center at the current instant of time, k , via the difference in the number of aircraft that 
came into the Center and the number of aircraft that left the Center as follows. 
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The fractions ij
!  and ji

!  are obtained as transition probabilities in Ref. 5.  The departures within Center i  are 

denoted by )(kd
i

. Observe that the model in Eq. (1) is driven solely by departures. All the other flow terms 
including the number of aircraft landing at a given instant of time are modeled as fractions of the numbers of aircraft 
in the Centers, which are the states of the model. If a database of such models is constructed using historical traffic 
data from days that characterize both the usual and unusual traffic flow conditions (for example, caused by weather 
conditions on the airport surface and enroute) in the NAS, the model that best represents the expected condition on a 
given day can be chosen for predicting that day’s traffic. 

Fig. 2 Twenty-three Center network model. 
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 For the purpose of modeling, the departures can be split into two components- a deterministic one and a 
stochastic one. The deterministic portion of the departures )(kui  can be computed from filed flight plans and from 
historical departure data. For example, )(kui  can be set to the average departure count derived from historical data. 
The stochastic component of the departures, )(kwi , can be modeled by assuming a suitable distribution, such as a 
Gaussian or a Poisson distribution. In such a model, )(kwi , which represents the expected variation around the 
deterministic component, can be obtained either from historical data or from the knowledge of that day’s expected 
uncertainty. 
 

 

The discrete system in Eq. (1) can be rewritten in the standard State Space notation as:  
 

 

! 

x(k +1) = A(k)x(k) + B(k)u(k) +C(k)w(k)  (2)  

where,  
• k  denotes the time instant defined by Tk! , with 

! 

"T being the sampling interval. In the earlier work in Ref. 5, 
it has been shown that a 10-minute sampling interval accurately approximates Center aircraft count. This 
sampling interval has also been used for generating the results presented in this paper; 

• 

! 

x(k)=

! 

1x (k),... Nx (k)[ ] is the state vector with the number of aircraft in the Centers at time 

! 

k  as its elements; 
• 

! 

u k( )=

! 

1u (k),... Nu (k)[ ] is the control vector with the number of aircraft departing (taking off) from the Centers 
as its elements; 

• 

! 

w k( )=

! 

1w (k),... Nw (k)[ ] is a vector for modeling departure uncertainties;  
• 

! 

A k( )  is the state transition matrix that contains the information of how flights transition from one Center to the 
other Center.  

 The elements of the state transition matrix A  are given by: 

 
NjNiji

a ijij
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where, 23=N  is the number of Centers including one for the international region. The off-diagonal terms )(kaij  

represent the fraction of aircraft transitioning from Center i to the Center j at time 

! 

k . This quantity can be 
calculated from historical data and will be shown to be slowly varying over time.  

Fig. 3 The components of aircraft flow contributing to the traffic count in a given Center. 
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The diagonal terms can be calculated as:  

 !
=

"=
N

j

ijiia
1

1 #  (4) 

These terms represent the fraction of the aircraft that remained in the Center i  during the th
k  time step.  

Although, a special case of the above formulation with 

! 

B = 0 and IC =  with 

! 

w k( )  being a Poisson random 
variable were used in Ref. 5, the general model with B permits analysis, such as the sensitivity of the traffic flow to 
variations in the departure rates. For the remainder of this paper, 

! 

B = I and IC =  are assumed, where I  is the 
identity matrix.  

 

III. � Data Used 
Behavior of the LDSM was studied using real traffic data for four consecutive days from 6 May 2003 through 9 

May 2003. Traffic data consisting of tracks and flight plans were recorded at one-minute intervals from the data feed 
provided by the Enhanced Traffic Management System (ETMS).6 The four days of recorded data were processed 
using the Future ATM Concepts Evaluation Tool (FACET).7 At each instant of time during the 24-hour period, 
numbers of aircraft in the Center, coming into the Center from a neighboring Center, leaving the Center for a 
neighboring Center, landing in the Center and taking off in the Center were counted for each of the 23 Centers (22 in 
U. S. + international). These counts were then used for creating the state transition matrices, A, for each day. The 
LDSM with these state transition matrices were subsequently used for generating time histories of traffic count in 
the Centers. 

Traffic count results for the Atlanta Center (ZTL), Los Angeles Center (ZLA) and the New York Center (ZNY) 
as a function of Coordinated Universal Time (UTC), obtained using the LDSM driven by 6 May 2003 departures, 
are shown in Fig. 4. Note that the transition matrices used, one for each hour, were also created using May 6 
recorded traffic data. As expected, these Centers have two basic modes of operation based on the time of the day. 
There is relatively little activity during the nighttime hours and a lot of activity during the daytime hours. Traffic 
increases rapidly during the local morning hours and then settles at a relatively high level for most of the day until 
the local nighttime hours.  Observe from Fig. 4 that this basic pattern is offset between certain Centers, reflecting the 
differences between their local time zones. 

 

 

 
Subsequent sections describe how the data were used for examining the properties of LDSM in forecasting 

nominal traffic count and uncertainty bounds about it. 

Fig. 4 Traffic count on 6 May 2003 in selected Centers in the U. S. across a 24-hour period. 
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IV. Flow Matrix Modeling 
This section examines two aspects of the LDSM: 1) the impact on modeling errors of maintaining state transition 

matrices constant over an aggregation intervals of T! (for example, one hour) during the 24-hour period and 2) the 
effect of using state transition matrices based on historical data for modeling today’s traffic counts. 

In Sec. II, the state transition matrix

! 

A  was constructed using fractions of aircraft crossing Center boundaries. 
Although the number of aircraft does change from day-to-day (see Fig. 5), the benefit of using fractions is that they 
do not change very drastically. Fig. 5 shows the general behavior of Atlanta Center (ZTL) traffic across multiple 
days.  Observe that the traffic patterns are quite similar but the number of aircraft at any given time of day does 
change from day-to-day depending on the number of departures. 
 Examination of the state transition matrix 

! 

A  shows that it is diagonally dominant with a large fraction of the 
aircraft staying within each Center between time steps 

! 

k  and 

! 

k +1.  For larger aggregation intervals, the diagonal 
dominance is diminished, with a large fraction of the aircraft leaving the Center. The off-diagonal terms increase 
because more aircraft arrive in the Center during the larger aggregation time interval. 

 

The slow moving nature of the underlying dynamics of flow and the diagonally dominant nature of 

! 

A  suggest 
that traffic count in the Centers can be modeled via a slowly varying 

! 

A  matrix. For example, Fig. 6 shows the effect 
of using A matrices averaged over one through 24-hour intervals in modeling traffic count in the Atlanta Center 
(ZTL) using 6 May 2003 data. Note that although state transition matrices are averaged over long time intervals, the 
LDSM is updated at every integration time step (for example, 10 minutes) for generating the time histories. 

In order to study the impact of state transition matrix aggregation interval on the modeling errors (differences 
between the actual counts and those generated by LDSM), traffic counts were generated in the 23 Center airspaces 
using the state transition matrix averaged over several different aggregation intervals. Thus, for one-hour 
aggregation interval, 23 state transition matrices were used over the span of 24 hours, while, for 24-hour aggregation 
interval, a single state transition matrix was used. In each of these nine instances (1-hour though 24-hour 
aggregation), modeling errors were computed for the 24-hour day by taking the difference between the aircraft 
counts predicted by LDSM and the actual aircraft counts, determined from recorded data, at each discrete time step. 

Fig. 5 Atlanta Center traffic across multiple days. 
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Figure 7 shows the normalized mean of the modeling errors as a function of the aggregation interval for the 

Atlanta Center using 7 May 2003 data. Crosses on the graph show the computed data points. The modeling errors 
are normalized by expressing them as a percentage of the mean actual aircraft count. Normalized mean of the 
modeling errors is defined as:     
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where, 

! 

µ
e
 is the mean of the modeling errors and

! 

µ  is the mean of the actual aircraft counts.  Note that modeling 
error is defined as the difference between the LDSM generated traffic counts and the actual traffic counts at each 
discrete time step. For 7 May 2003 data, the mean traffic in the Atlanta Center was 175 aircraft (see Fig. 5 for May 7 
traffic count time history). Figure 7 shows that the normalized mean of the modeling errors, which represents the 
bias, is fairly small and does not change substantially with the aggregation interval. 
 The normalized standard deviation for the same data is also shown in Fig. 7.  Normalized standard deviation of 
the modeling errors is defined as: 
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where 

! 

"
e
 is the standard deviation of the modeling errors and 

! 

µ  is the mean of the actual aircraft count, which for 
Atlanta Center on 7 May 2003 was 175. Observe from Fig. 7 that the standard deviation of the modeling errors 
grows with increasing aggregation interval.  

The mean and standard deviation trends in the Atlanta Center on 6 May 2003 and 9 May 2003 were found to be 
very similar to those in Fig. 7. The trends were different for 8 May 2003 data in that the mean and the standard 
deviation of the modeling errors monotonically increased with increasing aggregation interval. For the 24-hour 
aggregation interval, the normalized mean and normalized standard deviation of the errors were found to be -13.78 
(model-based counts less than actual counts) and 19.71, respectively, with the mean being 204 aircraft. Closer 
examination of the actual traffic data for 8 May 2003 revealed that Atlanta Center experienced a significantly greater 
traffic variation as a function of time of day compared to the three other days. 
 

Fig. 6 Predicted aircraft counts in ZTL with u updated at every time step, but A aggregated over 1- hour 
through 24-hour time intervals using 6 May 2003 data. 
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Mean aircraft counts, 

! 

µ , mean of modeling errors, 

! 

µ
e
, normalized mean of the modeling errors, 

! 

µ
N

, standard 
deviation of the modeling errors, 

! 

"
e
, and normalized standard deviation of the modeling errors, 

! 

"
N

, for all the 23 
Centers on 7 May 2003 with the state transition matrix aggregated over one-hour interval are summarized in Table 
1. This table shows that the normalized mean of the errors is less than 2 for all the Centers. The normalized standard 
deviation is less than 9 for all the Centers except for Hawaii (ZHN), where it is 13. Note that mean traffic count in 
Honolulu Center (ZHN) is 19, which is small compared to other Centers.   

 
Table 1 Summary of modeling error statistics for 23 Centers 
on 7 May 2003 with state transition matrix aggregation 
interval of one-hour 
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µ  

! 

µ
e
 

! 

µ
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! 
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! 

"
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ZAB 132 1.52 1.15 8.10 6.13 
ZAU 181 1.88 1.04 11.72 6.48 
ZBW 131 1.72 1.31 8.53 6.51 
ZDV 145 1.04 0.71 7.86 5.42 
ZDC 192 3.01 1.57 12.5 6.51 
ZFW 153 1.35 0.88 9.46 6.18 
ZHU 135 2.13 1.58 8.00 5.92 
ZID 154 1.37 0.89 10.96 7.12 
ZJX 163 2.03 1.24 8.12 4.98 
ZKC 155 1.50 0.97 7.52 4.85 
ZLA 168 1.78 1.06 9.88 5.88 
ZLC 102 0.59 0.57 7.33 7.19 
ZMA 84 1.48 1.76 5.85 6.97 
ZME 129 1.09 0.84 10.74 8.32 
ZMP 150 2.12 1.42 9.79 6.52 
ZNY 121 1.32 1.09 7.90 6.53 
ZOA 114 1.67 1.47 7.08 6.21 
ZOB 167 1.41 0.85 10.58 6.33 
ZSE 90 0.99 1.10 5.34 5.93 
ZTL 175 2.62 1.50 10.58 6.05 
ZAN 42 0.13 0.31 2.72 6.47 
ZHN 19 0.31 1.61 2.47 13.02 
INTL 838 4.72 0.56 20.17 2.41 

 
 

Fig. 7 Normalized mean and standard deviation of the modeling errors as a function of state transition 
matrix aggregation interval.  
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These same statistics for the aggregation interval of 12 hours is summarized in Table 2.  Comparing Table 2 to 
Table 1, it is easily seen that the mean and the standard deviation values for all the Centers with 12-hour aggregation 
interval are about twice as much as those with one-hour aggregation. 

 
Table 2 Summary of modeling error statistics for 23 Centers 
on 7 May 2003 with state transition matrix aggregation 
interval of 12 hours 
 

! 

µ  

! 

µ
e
 

! 

µ
N

 

! 

"
e
 

! 

"
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ZAB 132 2.17 1.64 17.24 13.06 
ZAU 181 4.04 2.23 20.02 11.06 
ZBW 131 3.59 2.74 13.27 10.13 
ZDV 145 1.32 0.91 21.25 14.65 
ZDC 192 4.54 2.37 22.37 11.65 
ZFW 153 2.36 1.54 22.32 14.59 
ZHU 135 3.21 2.38 16.10 11.93 
ZID 154 2.80 1.82 15.23 9.89 
ZJX 163 2.75 1.69 16.28 9.99 
ZKC 155 2.13 1.38 19.41 12.52 
ZLA 168 3.91 2.33 14.82 8.82 
ZLC 102 0.81 0.79 15.98 15.67 
ZMA 84 2.17 2.58 8.61 10.25 
ZME 129 2.45 1.90 16.28 12.62 
ZMP 150 4.59 3.06 17.91 11.94 
ZNY 121 2.48 2.05 13.05 10.78 
ZOA 114 3.54 3.11 11.52 10.11 
ZOB 167 3.77 2.26 27.08 16.22 
ZSE 90 2.10 2.34 9.90 11.00 
ZTL 175 3.56 2.03 21.60 12.34 
ZAN 42 0.75 1.78 9.35 22.25 
ZHN 19 0.63 3.33 3.48 18.31 
INTL 838 13.40 1.60 109.64 13.08 

 
 

To determine the performance of LDSM when the state transition matrix is based on past data and departure 
rates are from current data, simulations were done using 6 May 2003 and 7 May 2003 data to predict 8 May 2003 
flow (averaged over 24-hours). Although the fit is worse and there is a lag in the behavior (see Fig. 8), the fit is still 
sufficient to be able to predict Center overloads and permit planning for resource management purposes. 

 

 

Fig. 8 Predicted ZTL aircraft counts with u updated every time step, but using a historical A from previous 
day (or from two days past) data aggregated over 24-hours. 
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It is thus clear that one can use a block-averaged version of 

! 

A  for modeling aggregate flow behavior. 
 

V. �Modeling of Departures from Airports 
Discussions in the previous sections assumed that the departures within each Center are known a-priori. Since a 

significant amount of air traffic in high altitude airspace is airline traffic, the general traffic trends can be expected to 
remain unchanged from day-to-day because of fixed airline schedules.  However, as seen in Fig. 5, the traffic count 
in the Centers does change from one day to the other because of convective weather and unavailability of some NAS 
resources. Weekday and weekend traffic trends also result in different traffic counts in the Centers. Many of these 
differences seen in the traffic patterns can be correctly modeled by LDSM constructed using historical data for days 
with similar characteristics.  
 As described earlier in Sec. II, LDSM allows for daily variations and other disturbances by using a deterministic 
component of the departures, u(k), and a stochastic component of the departures, w(k). The deterministic component 
could be the nominal estimate from all available data (e.g., historical departure data or proposed flight plans) while 
the stochastic component could be the uncertainty about the nominal estimate, which is also derived from the 
historical departure data. This approach implicitly accepts the fact that exact prior knowledge of the departures is 
difficult, therefore the traffic count computed using LDSM would have some uncertainty. 
 In Ref. 5, departures, )(kd , were modeled as samples from a single Poisson distribution. This approach can be 
generalized by modeling departures from several Poisson distributions over the 24-hour period. In order to take 
advantage of the many analysis techniques that are available for linear system models driven by Gaussian inputs, an 
alternative approach using the mean number of departures as the deterministic part of the input and variation about 
this mean as the stochastic part of the input (modeled as a Gaussian random variable) has been used in this paper. 
The mean number of departures can be computed from historical data as: 

 
D

kd

k
DL

i

i

L
!
""= 1

)(

)(µ  (7)    

where D  is the number of days and 
Li
d is the number of departures from Center i  on day L . Figure 9 shows the 

results of driving the LDSM with the mean departure counts computed over four days, 6 May 2003 through 9 May 
2003, using Eq. (7). State transition matrices aggregated over one-hour periods were first obtained for each of the 
four days and then averaged (element-by-element means of the four transition matrices) to obtain the mean 
transition matrices valid for each one-hour period. These average transition matrices were then used in the LDSM 
and propagated forward with an integration step size of four minutes for obtaining the results shown in Fig. 9. This 
figure also shows actual traffic count, computed from recorded traffic data (not model-based), for each of the four 
days. 
 Examination of the traffic count time history, generated using mean departure counts, with respect to the actual 
traffic counts in Fig. 9 shows that the LDSM-generated counts approximate the mean traffic counts quite well. This 
figure also shows that the actual traffic count on any given day differs from the LDSM-generated traffic count. 
Therefore, uncertainty modeling is required to ensure that actual counts lie within the range established by these 
bounds. The mean traffic count prediction along with the uncertainty bounds about it can then be used for traffic 
flow management decisions. 
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In order to model the variation about the mean traffic count, the standard deviation of the departures can be 

computed from historical departure data as: 
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The stochastic component of the input w(k) (see Eq. (2)) can be modeled with each component )(kwi  as a random 
variable from the Normal distribution with the mean given by Eq. (7) and the standard deviation given by Eq. (8). 
Note that the distribution is assumed to be non-stationary and the mean and variance change with time 

! 

k . 
 The normalized distribution of departures for three days, 6 May 2003 through 8 May 2003, is shown in Fig. 10. 
The departure distribution was obtained by first computing an average traffic count during each time interval (10-
minutes) using the three days of data and then computing the difference of traffic counts for each day with respect to 
the average during each time interval in the 24-hour period. The difference counts for the three days were put 
together in a single dataset for creating the histogram. The resulting histogram was then normalized with respect to 
the area under the histogram to obtain the probability density function.  This graph is shown with the ‘x’ symbol in 
Fig. 10. 
 The mean and the standard deviation values obtained from the dataset were used for fitting a Gaussian 
probability density function, which is marked by the ‘o’ symbol in Fig. 10. Although the Gaussian probability 
density function does not fit the actual probability density function perfectly, it is a reasonable approximation. It 
remains to be seen whether the approximation would improve if this analysis were repeated with several more days 
(for example, 30 days) of traffic data. 
 

Fig. 9 Traffic count in ZFW calculated using mean departure counts and state transition matrix averaged 
over one-hour intervals, and actual traffic counts during four days in May. 
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VI.� Modeling Uncertainty Bounds 
The process of computing uncertainty bounds about the LDSM-based nominal traffic count prediction is 

described in this section. The results presented in the previous sections (for example, see Fig. 9) were obtained using 
the deterministic part of the input, consisting of mean departure counts in the Centers. In this section, use of the 
stochastic part of the input along with the LDSM model in Eq. (2) in establishing uncertainty bounds is discussed. 
 Assuming w(k) is a vector of discrete time white noise sequences with covariance Q(k) in LDSM, given in Eq. 
(2), the uncertainty bounds can be obtained in terms of the state covariance matrix )(kP  using the following 
recursive equation:8    

 

! 

P(k +1) = A(k)P(k) T
A k( ) +C(k)Q(k) T

C k( )  (9) 

This equation is also used for state covariance propagation in the process update step of a Kalman Filter.9  

Propagation of the state covariance using Eq. (9) requires knowledge of the covariance matrix Q(k) and the initial 
state covariance matrix )0(P . Starting with a null matrix of size 2323! , the diagonal terms of the Q(k) matrix 
are set to the variances of the numbers of takeoffs in the Centers. 
Thus, 

 
( )

( ) jiki

jikq ji

=!=

"!=

# 2

0,
 (10) 

( )k
i!
2  is the variance in the number of takeoffs in the Centers computed using Eq. (8). To initiate the covariance 

propagation process, the state covariance matrix )0(P  is initialized to a null matrix.  
The time histories of average traffic counts for the Fort Worth Center, obtained using LDSM in Eq. (2), and !3  

bounds, obtained using the covariance propagation Eq. (9), are shown in Fig. 11. The average traffic count is shown 
via the square symbol in Fig. 11. This figure also shows the traffic count history in the Fort Worth Center on 1 
October 2003, which is marked with the circle symbol. Observe from the figure that the 1 October 2003 traffic 
counts lie within the uncertainty bounds ( !µ 3± ) obtained using LDSM based on 6 May 2003 through 9 May 
2003 data. 
 

Fig. 10 Probability density function of Atlanta Center departures with respect to the mean number of 
departures and its approximation with a Gaussian model. 
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Although results have only been shown for the Fort Worth Center, the model-based traffic counts in other 

Centers were found to be of similar quality. These results illustrate that covariance propagation based on LDSM 
adequately describes the statistical variation seen in the day-to-day actual traffic flows. 

 

VII. Conclusions 
We have described a class of linear time varying models to represent traffic flow for developing sound strategic 

traffic flow management decisions. The linear dynamic traffic flow system model with a slowly varying transition 
matrix and Gaussian departure representation was shown to adequately represent traffic behavior at the Center level. 
Furthermore, the method for computing uncertainty bounds around nominal traffic counts in the Centers was 
described. Numerical examples were presented using actual traffic data from four different days to demonstrate the 
model characteristics. The advantages of this class of models are: (1) Unlike trajectory-based models, these models 
are less susceptible to uncertainties in the system; (2) The model order is reduced by several orders of magnitude 
from 5000 aircraft trajectories to 23 states at any given time; and (3) A host of tools and techniques of modern 
system theory can be applied to this model because of its form. The capabilities of this class of models for strategic 
traffic flow management will be explored in the future. 
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Fig. 11 Model-based average traffic counts and uncertainty bounds in the Fort Worth Center. 
 


